Prediction of Bradycardia using Decision Tree Algorithm and Comparing the Accuracy with Support Vector Machine

نویسندگان

چکیده

This study compares the Accuracy of Support Vector Machine (SVM) Classifier and Decision Tree (DT) in predicting Innovative Bradycardia disease diagnosis. Materials Methods: There are 7,500 records dataset that was used for this investigation. 40 utilized test to get a 95% confidence level 1% margin error. 12 qualities or features per record. Using SVM, is detected. Results: According statistical analysis, 92.62%, P<0.05, SVM 87.5%, P<0.05. The p value calculated as 0.001 (p<0.05, independent sample t-test indicating statistically significant difference accuracy rates between two algorithms (SVM DT). Conclusion: In prediction task, (92.5%) exhibited improvement over (87.5%), demonstrated by findings present study.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Traditional Statistics, Decision Tree Classification And Support Vector Machine Techniques For Financial Bankruptcy Prediction

Recently, several spectacular bankruptcies, including Fannie Mae, Freddie Mac, Washington Mutual, Merrill Lynch, and Lehman Brothers, have caught the world by surprise. To improve the accuracy of financial distress predictions, this research compares traditional statistical methods (i.e., linear discriminant analysis, logistic regression), decision tree classification methods (i.e., C5.0, CART,...

متن کامل

Transmembrane segments prediction and understanding using support vector machine and decision tree

In recent years, there have been many studies focusing on improving the accuracy of prediction of transmembrane segments, and many significant results have been achieved. In spite of these considerable results, the existing methods lack the ability to explain the process of how a learning result is reached and why a prediction decision is made. The explanation of a decision made is important fo...

متن کامل

Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine

Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...

متن کامل

Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine

Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...

متن کامل

Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine

Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E3S web of conferences

سال: 2023

ISSN: ['2555-0403', '2267-1242']

DOI: https://doi.org/10.1051/e3sconf/202339909004